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Introduction and motivation

Symmetric Positive Definite (SPD) matrices

Sym™*(n) = set of n x n SPD matrices

@ Have been studied extensively mathematically
@ Numerous practical applications

e Brain imaging (Arsigny et al 2005, Dryden et al 2009, Qiu et al
2015)

e Computer vision: object detection (Tuzel et al 2008, Tosato et al
2013), image retrieval (Cherian et al 2013), visual recognition
(Jayasumana et al 2015), many more

e Radar signal processing: Barbaresco (2013), Formont et al 2013

e Machine learning: kernel learning (Kulis et al 2009)
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@ Overview of SPD, especially covariance matrices and their
applications in computer vision

@ Generalization to infinite-dimensional setting, namely covariance
operators, via kernels

o Nonlinear generalizations of covariance matrices
e Can achieve substantial gains in practical performance compared
to the finite-dimensional setting
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@ Part |: Finite-dimensional setting
Covariance Matrices and Applications
@ Part lI: Infinite-dimensional setting

Covariance Operators and Applications
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Part | - Outline

Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
@ Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Part Il - Qutline

Infinite-dimensional setting

Covariance Operators and Applications

@ Data Representation by Covariance Operators
@ Geometry of Covariance Operators

© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
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Finite-dimensional setting
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Part | - Outline

Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
@ Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Part | - Outline

Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
@ Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Covariance matrix representation of images

@ Tuzel, Porikli, Meer (ECCV 2006, CVPR 2006): covariance
matrices as region descriptors for images (covariance descriptors)

@ Given an image F (or a patch in F), at each pixel, extract a feature
vector (e.g. intensity, colors, filter responses etc)

@ Each image corresponds to a data matrix X
X=[X1,...,Xm] = nx m matrix

where

e m = number of pixels
e n = number of features at each pixel
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Covariance matrix representation of images

X =[xq,...,Xxm] = data matrix of size n x m, with m observations

@ Empirical mean vector
—1Zm:x-—1x1 1, =(1 1T erR™
,Ux_mi_1 I_m m; m = PR

@ Empirical covariance matrix

1 & _ .
Cx = m ;(X/ — pux)(Xi — px)’ = EXJmX
I = Iy — %1,,,1,{7 = centering matrix
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Covariance matrix representation of images

Image F = Data matrix X = Covariance matrix Cx

@ Each image is represented by a covariance matrix
@ Example of image features

f(x,y)

oR OR, ,0G, 0G, 0B, 0B
= I(Xay)vF"(X7y)7G(X7y)>B(Xay)’|alvlyy‘v‘a‘v‘w‘v‘aix|7laiy|

at pixel location (x, y)
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Example
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Covariance matrix representation - Properties

@ Encode linear correlations (second order statistics) between
image features
@ Flexible, allowing the fusion of multiple and different features
e Handcrafted features, e.g. colors and SIFT
e Convolutional features
@ Compact

@ Robust to noise
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Covariance matrix representation - generalization

@ Covariance representation for video: e.g. Guo et al (AVSS 2010),
Sanin et al (WACV 2013)

o Employ features that capture temporal information, e.g. optical flow

@ Covariance representation for 3D point clouds and 3D shapes:
e.g. Fehr et al (ICRA 2012, ICRA 2014), Tabias et al (CVPR
2014), Hariri et al (Pattern Recognition Letters 2016)

e Employ geometric features e.g. curvature, surface normal vectors

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 17/125



Statistical interpretation

Representing an image by a covariance matrix
is essentially equivalent to
Representing an image by a Gaussian probability density p in R” with
mean zero

Features extracted are random observations of a n-dimensional
random vector with probability density p
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Statistical interpretation

X =(Xq,...,Xn) =random vector in R" with probability density
function p

@ Mean vector
n=E(X)
@ Covariance matrix

C = E[(X — p)(X — )]
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Statistical interpretation

@ Variance of the random variable X;
Cii = E[(X; — )?]
@ Covariance between the random variables X; and X;
Cij = cov(Xi, Xj) = E[(Xi — i) (X — )]

@ Correlation between X; and X;

corr(X;, X)) = {
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Statistical interpretation

@ Multivariate Gaussian probability density p = A (u, C), with
covariance matrix C € Sym™*(n)

1

I RO A VR
) = s oo (5= )70 )

@ If u = 0, then p is completely determined by the covariance matrix
C
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Empirical covariance matrix - MLE estimate

X =[x1,...,Xm], X;'s = lID samples drawn from N (y, C)
@ Log-likelihood function

mn

log L(11, CIX) = ——

log(27) — g log det(C)
1 m
~3 Y i=w)CT (G —p).
i—
@ MLE estimates of  and C
1 & 1
= > X, Cx= P D (= ) (%= mx)"
i—1

i=1
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Empirical covariance matrix - Unbiased estimate

@ MLE estimate of u is unbiased

E(ux) = p

@ MLE estimate of C is biased

E(Cx) = mT”c £C

@ Unbiased estimate

m 1

_ T
m—1CX_ m—1XJmX

Ex =
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Empirical covariance matrix - MLE vs. unbiased

Cx = ~XJmXT = MLE estimate, Cx = '+ XJmX" = unbiased estimate
@ In the Gaussian case, in terms of MSE (mean square error)
MSE(Cx) = E||Cx — C||# < MSE(Cx) = E||Cx — I}

since Cx has smaller variance
@ Both estimates are consistent: MSE — 0 as m — oo
@ The difference (by a factor ’"74) diminishes as m becomes large
@ Both estimates have been used in practice
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Empirical covariance matrices - Regularization

@ Cy is only guaranteed to be positive semi-definite
@ Cx can be ill-conditioned

@ For Cyx to be positive definite/well-conditioned, need to use
regularization in general

@ Diagonal loading, widely used, readily generalizable to
infinite-dimensional setting

Cx+~l v>0

@ More generally, shrinkage estimators, Ledoit and Wolf (Journal of
Multivariate Analysis, 2004)

Cx=(1-p)Cx+pvl, 0<p<1,0>0
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Encoding the mean

@ Some recent work also employ the mean p in the representation,
e.g. Wang et al (CVPR 2016), Li et al (PAMI 2017)

@ Current presentation: assuming zero mean
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Summary - Covariance Representation

Data Representation by Covariance Matrices

@ Representation of images by covariance matrices and its
generalizations

@ Statistical interpretation
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After Data Representation by Covariance Matrices

For practical applications, e.g.
classification, clustering, regression etc

@ We need notions of distances/similarities between covariance
matrices
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Part | - Outline

Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
@ Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Invariances and Interpretations

@ Riemannian manifold

o Affine-invariant Riemannian metric
e Log-Euclidean metric

© Convex cone

e Bregman divergences
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
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@ Riemannian manifold
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© Convex cone

e Bregman divergences

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 31/125



Euclidean metric

Mat(n) = set of real n x n matrices

@ (Mat(n), +, -) is a vector space, under standard matrix addition (+)
and scalar multiplication (-)

dim(Mat(n)) = n®
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Euclidean metric

B = (by)]

@ Frobenius inner product between A = (a;) Mzt

n
Ivj:1 ’

(A,B)F=tw(ATB) = ) ajby

ij=1n
@ Frobenius norm of an n x n matrix A = (a;);;_4
n
2 T
IAlIE = u(ATA) =) &
ij=1

@ Euclidean (Frobenius) distance between two n x n matrices A, B

de(A,B) = [|A—Bl|F
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Euclidean metric

In the Euclidean metric, each n x n matrix A is equivalent to its
vectorized version vec(A) € R

(A, Byr = (vec(A), vec(B))
[AllF = llvec(A))I|

de(A, B) = [|A— Bl[¢ = |[vec(A) — vee(B)|
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Euclidean metric

Sym(n) = set of real, symmetric n x n matrices

@ Sym(n) is a vector subspace of Mat(n)

:n(n+1)

dim(Sym(n)) 5

Sym™*(n) = set of real SPD n x n matrices

@ Sym™"(n) is an open subset in Sym(n) C Mat(n)
@ Sym™ " (n) automatically inherits the Euclidean metric on Mat(n)

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 35/125



Euclidean metric - Properties

@ Simple to implement and efficient to compute

@ Essentially treats matrices as vectors, without taking into account
their inherent structures

@ Not intrinsic to Sym™ " (n)

@ May lead to swelling effect (mean of a set of SPD matrices might
have larger determinant than the component matrices, Arsigny et
al 2007)

@ (Sym™*(n), dg) is an incomplete metric space: Cauchy
sequences, {An}, ||An — Am||F arbitrarily small, may not converge
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Euclidean metric - Properties

@ Unitary (orthogonal) invariance: CCT = | <= C~' = CT
de(CAC™',CBC™') = de(A, B)

@ Corresponds to e.g. rotation invariance of Euclidean distance in
Rn
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Invariances and Interpretations

@ Riemannian manifold

o Affine-invariant Riemannian metric
e Log-Euclidean metric

© Convex cone

e Bregman divergences

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 38/125



Invariances and Interpretations

X = random vector in R"

@ Affine transformation
X = Tap(X)=AX+b, Ae Mat(n)invertible ,b € R"
@ Transformed mean vector
I ap(X) = Apx + b
@ Transformed covariance matrix

Crap(X) = ACxAT
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Invariances and Interpretations

d = distance or divergence on Sym™ " (n)
X, Y =random vectors in R"

X—AX+b, Y—-AY+b

@ Affine invariance
d(ACxAT,ACyAT) = d(Cx, Cy)
@ Scale invariance: A= +/sl,s>0,b=0

d(sCx,sCy) = d(Cx, Cy)

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 40/125



Invariances and Interpretations

d = distance or divergence on Sym™*(n)
X, Y =random vectors in R”

X—AX+b, Y—-AY+b

@ Unitary (orthogonal) invariance: AAT = | <= AT =A"1,b=0
d(ACxA~',ACyA™") = d(Cx, Cy)

e.g. Ais a rotation matrix
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Invariances and Interpretations

d = distance or divergence on Sym™ " (n)
X, Y =random vectors in R"

@ Invariance under inversion
d(Cx'.Cy") = d(Cx, Cy)
@ For two Gaussian densities p1 = NV(0, Cx) and p> = N(0, Cy)
d(p1. p2) = d(Cx, Cy') = d(Cx. Cy)

@ d(p1, p2) can be equally measured via either the
distance/divergence between the corresponding covariance
matrices or precision matrices.
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Summary - Invariances and Interpretations

@ Affine invariance

@ Scale invariance

@ Unitary (orthogonal) invariance

@ Invariance under inversion

@ The corresponding data transformations
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Invariances and Interpretations

@ Riemannian manifold

o Affine-invariant Riemannian metric
e Log-Euclidean metric

© Convex cone

e Bregman divergences
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Smooth manifold

M = n-dimensional manifold
@ Locally Euclidean (R")
@ Generalizations of two-dimensional regular surfaces in R3
@ Examples
e R7
@ Open subsets of R”
e n-dimensional unit sphere

STT={xeR": X2 4.+ x2=1}
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Smooth manifold - tangent vectors and tangent spaces

@ Smooth curve v : (a,b) — R3, v/(t) # 0
Tangent vector at ty : V = /(1)

@ Regular surface S ¢ R3:
e Tangent vector at a point P € S

V=9'0), v:(-€€¢)—87(0)=P
e Tangent plane Tp(S)

Tp(S) = {all tangent vectors at P}
dim(Tp(S)) =2 (2-dimensional plane)
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Smooth manifold - tangent vectors and tangent spaces

M = n-dimensional smooth manifold

@ Tangent vector: generalization of tangent vectors on regular
surfaces (e.g. Do Carmo 1992, Jost 2008)

@ Tangent space Tp(M) at a point P € M

Tp(M) = {all tangent vectors at P}
dim(Tp(M)) = n (n-dimensional vector space)
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Riemannian metric and Riemannian manifold

Riemannian manifold M = smooth manifold M + Riemannian metric

@ Riemannian metric: a way to define distances on manifolds

@ Riemannian metric: a family of inner products on the tangent
spaces Tp(M)

<V7 W>F” V,We TP(M)

that varies smoothly with P
@ Length of a vector V in the tangent space Tp(M)

IVllp =V, V)p
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Riemannian metric and Riemannian distance

A, B = two points on the manifold M
v : [a, b] = M = smooth curve joining A,B, v(a) = A, v(b) = B

@ /(1) is a tangent vector on the tangent space T ;) (M)
@ Length of the curve ~

b
L) = [ 10 Ol
a
@ Riemannian distance between two points A and B on the manifold
d(A. B) = inf{L(~) : 7(a) = A, ~(b) = B}

@ (M, d) is a metric space (satisfying positivity, symmetry, and
triangle inequality)
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Geodesics

@ Curves of zero acceleration (e.g. Do Carmo 1992)
@ Generalization of straight lines in R"
@ Constant speed

d
2R Dl =0

@ Geodesically complete manifold:

e (M, d) is a complete metric space
o Geodesic of shortest length: 3 a geodesic 45 joining any two
points A, B, with

L(yag) = d(A, B)
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Geodesics - Example
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Riemannian exponential map

Expp : Tp(M) - M
Moving along the manifold, starting from point P € M, in the direction
Ve Tp(./\/l)

, K
Expp(V) = v (1)
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Geodesics - Example

Geodesics may not be unique
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Curvature

@ Sectional curvature: For a two-dimensional subspace
Yp C Tp(M)and abasis {X, Y}inXp

(R(X,Y)X, Y)p

K(Zp) = Kp(X,Y) =
P IX[[3]Y][Z — (X, V)3

@ AR: Riemannian curvature tensor

@ Measures how much a manifold deviates from Euclidean space
@ Generalization of Gaussian curvature on regular surfaces in R3
@ Euclidean space R": K = 0 (flat)

@ Sphere S"1: K = 1
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Curvature - Nonpositive curvature

@ Cartan-Hadamard manifold: simply-connected, geodesically
complete, nonpositive curvature

@ Geodesics between any two points are unique

@ Sym™(n) under both the affine-invariant Riemannian metric and
Log-Euclidean metric

@ The exponential map Expp : Tp(M) — M is a diffeomorphism,
i.e. it is a bijection, smooth, with smooth inverse

Logp : M — Tp(M)
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Riemannian logarithm map

Logp : M — Tp(M)

V =Logp(Q)

Q) =Expp(V)
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Riemannian metric and Riemannian manifold

Riemannian manifold M = smooth manifold M + Riemannian metric

@ Every smooth manifold M admits a Riemannian metric
@ Riemannian metrics are not unique
@ Each Riemannian metric defines a different distance on M
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Invariances and Interpretations

@ Riemannian manifold

o Affine-invariant Riemannian metric
e Log-Euclidean metric

© Convex cone

e Bregman divergences
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Smooth manifold of SPD matrices

Sym™*(n) = symmetric, positive definite n x n matrices
@ Smooth manifold of dimension @
@ Tangent space Tp(Sym™*™)(n) = Sym(n) = vector space of
symmetric matrices
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Affine-invariant Riemannian metric

@ Has been studied extensively in mathematics

@ Siegel (1943), Mostow (1955), Pennec et al (2006), Bhatia (2007),
Moakher and Zérai (2011), Bini and lannazzo (2013)
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Affine-invariant Riemannian metric

@ Riemannian metric: On the tangent space
Tp(Sym™**(n)) = Sym(n), the inner product (, )p is

(V,W)p = (P 12yp=1/2 p=12yp-1/2)
=tw(PTVPIW)
P e Sym*™*(n), V,W € Sym(n)

@ Affine-invariance
(CACT,CBCT) cpor = (A, B)p

for any invertible n x n matrix C
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Affine-invariant Riemannian metric

@ Geodesically complete Riemannian manifold, nonpositive
curvature

@ Unique geodesic joining A, B € Sym™*(n)

'YAB(t) _ A1/2(A—1/ZBA—1/2)I‘A1/2
v48(0) = A, ~yag(1) =B

@ Riemannian (geodesic) distance
d,is(A, B) = ||log(A~"2BA~"/2)||¢
where log(A) is the principal logarithm of A
A= UDUT = Udiag(\q,...,An)UT
log(A) = Ulog(D)UT = Udiag(log A1, ..., log A\p)UT
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Affine-invariant Riemannian distance - Properties

@ Affine-invariance
dye(CACT,CBCT) = d,e(A, B), any C invertible
@ Scale invariance: C = /sl, s > 0,
0wie(SA, sB) = dug(A, B)
@ Unitary (orthogonal) invariance: CCT = | <= C~' = CT

dye(CAC™',CBC™") = d,e(A, B)
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Affine-invariant Riemannian distance - Properties

@ Invariance under inversion
due(A~', B") = dur(A, B)

@ (Sym™(n), dyg) is a complete metric space
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Connection with Fisher-Rao metric

@ Close connection with Fisher-Rao metric in information geometry
(e.g. Amari 1985, 2016)

@ For two multivariate Gaussian probability densities p1 ~ N (u, Cy),
p2 ~ N(u, Cz)

dhie(C1, Co) = 2(Fisher-Rao distance between py and py )
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Affine-invariant Riemannian distance - Complexity

@ For two matrices A, B € Sym™(n)

n
dZe(A, B) = [|log(A"12BATV3)|[2 = " (log Ak)?
k=1

where {\(}/_, are the eigenvalues of
A~12BA-1/2 orequivalently A~'B

@ Matrix inversion, SVD, eigenvalue computation all have
computational complexity O(n®)

@ Therefore d,z(A, B) has computational complexity O(n®)
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Affine-invariant Riemannian distance - Complexity

For a set {A;}", of N SPD matrices, consider computing all the
pairwise distances

duie(Ai, A)) = || log(APAA TP, 1<ij<N

@ The matrices A;, A; are all coupled together
@ The computational complexity required is O(N?n®)
@ This is very large when N is large
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Riemannian manifold

o Affine-invariant Riemannian metric
o Log-Euclidean metric

© Convex cone

e Bregman divergences
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Log-Euclidean metric

@ Log-Euclidean metric as a Riemannian metric

@ Log-Euclidean distance as an approximation of the affine-invariant
Riemannian distance

@ Log-Euclidean vs. Euclidean
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Log-Euclidean metric

@ Arsigny, Fillard, Pennec, Ayache (SIAM Journal on Matrix Analysis
and Applications 2007)

@ Another Riemannian metric on Sym™*(n)

@ Much faster to compute than the affine-invariant Riemannian
distance on large sets of matrices

@ Can be used to define many positive definite kernels on Sym™*(n)
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Log-Euclidean metric

Riemannian metric: On the tangent space Tp(Sym™*(n))

(V,W)p = (Dlog(P)(V), Dlog(P)(W))Fr
P c Sym™"(n), V,W € Sym(n

where
@ Dlog is the Fréchet derivative of the function
log : Sym™**(n) — Sym(n)
@ Dlog(P) : Sym(n) — Sym(n) is a linear map
@ Explicit knowledge of ( , )p is not necessary for computing
geodesics and Riemannian distances
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Log-Euclidean metric

@ Unique geodesic joining A, B € Sym™ " (n)

148(t) = exp[(1 — t) log(A) + tlog(B)]

@ Riemannian (geodesic) distance

dhoge(A, B) = [[ log(A) — log(B)||F
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Log-Euclidean distance - Complexity

@ For two matrices A, B € Sym™ " (n)

diog(A, B) = || log(A) — log(B)||F

@ The computation of the log function, requiring an SVD, has
computational complexity O(n®)

@ Therefore diogr(A, B) has computational complexity O(n®)
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Log-Euclidean distance - Complexity

For a set {A;}Y, of N SPD matrices, consider computing all the
pairwise distances

dlogE(AiaAj) = H |0g(AI) - Iog(Aj)HFa 1< Ia.l < N

@ The matrices A;, A; are all uncoupled
@ The computational complexity required is O(Nn®)

@ This is much faster than the affine-invariant Riemannian distance
d.g When N is large
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Log-Euclidean vector space

@ Arsigny et al (2007): Log-Euclidean metric is a bi-invariant
Riemannian metric associated with the Lie group operation

® : Sym™*(n) x Sym™(n) — Sym™(n)
A® B = exp(log(A) +log(B)) =Bo A

@ Bi-invariance: for any C € Sym™*(n)

doge[(A© C), (B© C)] = doge[(C © A), (C © B)] = dhogr(A, B)
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Log-Euclidean vector space

@ Arsigny et al (2007): scalar multiplication operation

® : R x Sym*T(n) — Sym™(n)
A ® A = exp(\log(A)) = A*

@ (Sym™t(n),®,®) is a vector space, with ® acting as vector
addition and ® acting as scalar multiplication

@ Sym™*(n) under the Log-Euclidean metric is a Riemannian
manifold with zero curvature
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Log-Euclidean vector space

@ Vector space isomorphism

log : (Sym™*(n),®,®) — (Sym(n), +, )
A — log(A)

@ The vector space (Sym™ " (n), ®, ®) is not a subspace of the
Euclidean vector space (Sym(n), +, -)
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Log-Euclidean inner product space

@ Log-Euclidean inner product (Li, Wang, Zuo, Zhang, ICCV 2013)

<A7 B>logE = <|Og(A), |og(B)>F
HAHlogE = H |og(A)HF

@ Log-Euclidean inner product space
(Sym++(n)7 ©, ®, < ) >10gE)
@ Log-Euclidean distance

Clogr: (A, B) = || log(A) — log(B)[|F = [|(A® B™")liogk
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Kernels with Log-Euclidean metric

@ Positive definite kernels on Sym™*(n) defined with the
Log-Euclidean inner product ( , )ioee @and norm || ||ioee

@ Polynomial kernels

K(A, B) = ((A, B)iogt + €))?
= ((log(A), log(B))r + ¢)¥, deN,c>0

@ Gaussian and Gaussian-like kernels
1 _
K(A,B) = exp(~ 5 I(A© B )lIfe). 0<p<2

_ exp(_;z| log(A) — log(B)|[2)
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Log-Euclidean metric

@ Log-Euclidean metric as a Riemannian metric

@ Log-Euclidean distance as an approximation of the affine-invariant
Riemannian distance

@ Log-Euclidean vs. Euclidean
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Log-Euclidean distance as an approximation of the

affine-invariant Riemannian distance

Affine-invariant Riemannian metric

@ Riemannian exponential map: Expp : Tp(Sym™*(n)) — Sym™*(n)
Expp(V) = P2 exp(P~1/2vpP=1/2)p1/2
@ Riemannian logarithm map: Logp : Sym™t(n) — Tp(Sym™*(n))
Logp(A) = P2 log(P~'/2AP~1/2)P1/2 A e Sym*+(n)
@ At the identity matrix /

Exp)(V) = exp(V), Log(A) = log(A)
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Log-Euclidean distance as an approximation of the

affine-invariant Riemannian distance

@ Affine-invariant Riemannian metric on the tangent space
Tp(Sym™™*(n))

(V. W)p = (PV2VP 12 p12Wp-1/2)
V, W € Sym(n)

@ On the tangent space T;(Sym™ " (n))

(VW) =V, W), [IV-WI[;=IV-W|E
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Log-Euclidean distance as an approximation of the

affine-invariant Riemannian distance

@ At the identity matrix /

|| log(A) — log(B)||F = [[Log/(A) — Log,(B)|:

@ Log-Euclidean distance is obtained by projecting A, B onto the
tangent space at the identity T;(Sym™*(n))

@ This viewpoint does not capture the intrinsic nature of the
Log-Euclidean metric
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Log-Euclidean metric

@ Log-Euclidean metric as a Riemannian metric

@ Log-Euclidean distance as an approximation of the affine-invariant
Riemannian distance

@ Log-Euclidean vs. Euclidean
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Log-Euclidean vs. Euclidean

@ Euclidean: Sym™*(n) is an open subset in the Euclidean vector
space (Sym(n),+,-)

@ Log-Euclidean: (Sym**(n), ®, ®) is a vector space

@ The two vector space structures are fundamentally different

@ The differences between the metrics can be seen via the
invariance properties
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Log-Euclidean vs. Euclidean

Unitary (orthogonal) invariance CCT = | «<= C" = C~

@ Euclidean distance

de(CAC™',CBC~') = ||CAC™" — CBC'||¢
= [|A— B||r = de(A, B)

@ Log-Euclidean distance
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Log-Euclidean vs. Euclidean

@ Log-Euclidean distance is scale-invariant

dioge(SA, sB) = [ log(sA) — log(sB)||r
= [|log(A) — log(B)||F = choge(A, B)

@ Euclidean distance is not scale-invariant

dE(SAv SB) = SHA - BHF = SdE(A7 B)
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Log-Euclidean vs. Euclidean

@ Log-Euclidean distance is inversion-invariant

dioge(A™1,B71) = || log(A™") — log(B™)||
= ” - |Og(A) + |Og(B)HF = dlogE(Aa B)

@ Euclidean distance is not inversion-invariant

de(A, B ) =||A" - B¢
# ||A— B||F = de(A, B)
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Log-Euclidean vs. Euclidean

As metric spaces

@ (Sym™*(n), dg) is incomplete
@ (Sym™(n), diogr) is complete
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Log-Euclidean vs. Euclidean

Summary of comparison

@ The two metrics are fundamentally different

@ Euclidean metric is extrinsic to Sym™*(n)

@ Log-Euclidean metric is intrinsic to Sym™**(n)

@ The vector space structures are fundamentally different
@ They have different invariance properties
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Geometry of SPD matrices - Outline

Three different views of the set of SPD matrices

@ Subset of Euclidean space
e Euclidean metric

@ Riemannian manifold

o Affine-invariant Riemannian metric
o Log-Euclidean metric

© Convex cone

e Bregman divergences
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Bregman divergences

@ Q = convex subset in R”
@ ¢ : Q — R = differentiable, strictly convex function
@ Bregman divergence on Q2 (Bregman, 1967)

By(x,y) = ¢(X) — o(y) — (Vo(¥), x — ¥)

@ Divergence properties
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Bregman divergences

More generally, ¢ induces a parametrized family of divergences {d'}
(Zhang, Neural Computation, 2004)

4 [1- 1 1- 1
B0 = 1z [ o0+ e o (T )
—-1<a<1

Limiting cases

dj(x,y) = lim & (x,y) = By(x.)
d,'(x.y) = lim d3(x,y) = B,(y.x)
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Alpha Log-Determinant divergences

Chebbi and Moakher (Linear Algebra and lts Applications 2012)
Q = Sym™"(n), p(X) = — log det(X)

4 det(152A + 142B
I%gdet(A> B) = P log ( 217(1 2 131
T—0a% 7 det(A) 2" det(B) 2

-1 <a<1

Limiting cases
dl10gdet(A7 B) = oléigy d](())[gdet(A’ B) = tl‘(B_1A - I) - |0g det(B_1A)

(Burg divergence)

d! (A B)= Iim1d§fgdet(A,B):tr(A_1B—I)—Iogdet(A_1B)
o—r—

logdet
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Alpha Log-Determinant divergences

@ o = 0: Symmetric Stein divergence (also called S-divergence)

(4. B) =4 flogaet (212 ) - logden(4B) | = 4ok (4. )

e Sra (NIPS 2012):

dstein(A; B) = \/Iog det (AZB> — % Iog det(AB)

is a metric (satisfying positivity, symmetry, and triangle inequality)
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Alpha Log-Determinant divergences - Properties

@ Positivity
dl%gdet(Av B) 2 0
lggdet(A7 B) — 0 et A - B

@ In general, they are not symmetric and are not metrics.
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Alpha Log-Determinant divergences - Properties

@ Affine-invariance
i (CACT, CBCT) = a4 (A, B), any C invertible
@ Scale invariance: C = \/sl, s > 0,
disgder(SA, SB) = diggael(A; B)
@ Unitary (orthogonal) invariance: CCT = | < C~' = CT

dl%gdet(CAC_1a CBC_1) = I%gdet(Aa B)
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Alpha Log-Determinant divergences - Properties

@ Dual-symmetry

dl%gdet(Av B) = dl;;let(B’ A)
a = 0: symmetry
dl?)gdet(Av B) = dl?)gdet(Bﬂ A)
@ Dual-invariance under inversion

-1 —1 —
dl?)gdet(A ,B ) = dlo;:iet(Av B)
o = 0: invariance under inversion

dl%gdet(A_1 ’ B_1) = dl(())gdet(A’ B)
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Connection with the Rényi divergences

P, P> = Borel probability density functions on R”

@ For 0 < r < 1, the Rényi divergence (Rényi, 1961) of order r
between P; and P is

]
dp(P1, P2) = 3

log | Py(x) Pa(x)'"dx
—r RN

@ As r — 1, the Rényi divergence becomes the Kullback-Leibler
divergence (Kullback, 1951)

P1(x)

Po(x) ax

dki(Py, P2) = - Pi(x)log
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Connection with the Rényi divergences

For two multivariate Gaussian density functions Py ~ A/ (, Cy) and
P> ~ N (1, Co) (same mean)

dh(Py, Py) = det[(1 —r)Cy + rCQ]]

1
2(1—r) & [det(C1)1—’det(Cg)’

r r-1)
= 2 log:iet (C17CQ)

'
dki(P1, P2) = E[tr(C; Cy — 1) — log det(C, ' Cy)]

1
é dll)gdet( C1 ) C2)
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Alpha Log-Determinant divergences - Computational

complexity

@ Can compute the log det function using the Cholesky
decomposition. The computational complexity O(n®).

@ For a set of N SPD matrices, the computational complexity
required for computing all pairwise divergences dy q..(A;i, A;) is
O(N?n?).

@ No need to carry out matrix inversion and multiplication

@ Much faster than affine-invariant Riemannian metric
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Alpha-Beta Log-Determinant divergences

Cichocki, Cruces, Amari (Entropy 2015)

a(AB~18 4+ B(AB~1)~«
a+p
a>0,>0

)

DA (A, B) = 1,3 log det
(6]

@ A highly general family of divergences, encompassing many
divergences and distances on Sym™ " (n)

@ Affine-invariant divergences
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Alpha-Beta Log-Determinant divergences

@ Alpha Log-Determinant divergences

1—a 1+a

dl?)gdet(Av B) = D(T7T)(Au B)

@ /D(@2)(A B) is a metric on Sym™*(n)
pU/21/2) (A B) = 402

stein

(A B)

@ Squared affine-invariant Riemannian distance

lim D)(A, B) = || log(A~"/2BA-1/2)| 2
a—0 2
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Alpha-Beta Log-Determinant divergences

{\c}1_, = eigenvalues of AB~!

1 a\] + A
(c.B) - k k
D'*P)(A, B) aﬁlog< s >
@ Require the computation of the eigenvalues of AB~!

@ Generally have the same computational complexity as the
affine-invariant Riemannian distance
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Power Euclidean distances

Dryden, Koloydenko, Zhou (Annals of Applied Statistics 2009)

1
de (A B) = &HAO‘ —BYg, a>0

@ Euclidean distance de 1(A, B) = de(A, B)
@ Log-Euclidean distance as a limiting case

lim, de o(A, B) = || log(4) — log(B)|r
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Power Euclidean distances

1
deo(A B) = aHAO‘ —BYg, a>0

@ Do not share the same invariance properties as the Log-Euclidean
distance (neither scale-invariant nor inversion-invariant)

@ For a ¢ N, these divergences have the same computational
complexity as the Log-Euclidean distance
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Summary of distances and divergences

@ Euclidean (Frobenius) distance and inner product
@ Affine-invariant Riemannian distance
@ Log-Euclidean distance and inner product

@ Alpha Log-Determinant divergences, including symmetric Stein
divergence

@ Alpha-Beta Log-Determinant divergences
@ Power-Euclidean distances
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Properties of common distances and divergences

Euclidean | Log-E | Affine-invariant | Stein
geodesic distance Yes Yes Yes No
affine invariance No No Yes Yes
scale invariance No Yes Yes Yes
unitary invariance Yes Yes Yes Yes
inversion invariance No Yes Yes Yes
inner product distance Yes Yes No No
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Part | - Outline

@ Data representation by covariance matrices
@ Geometry of SPD matrices
@ Machine learning methods on covariance matrices
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Machine learning methods on covariance matrices

@ Sparse coding and dictionary learning: Cherian and Sra (Trans.
Neural Net. Learning Systems 2016), Harandi et al (Trans. Neural
Net. Learning Systems 2016), Li et al (ICCV 2013), Sivalingam et
al (PAMI 2016), Wu et al (Trans. Image Processing 2015)

@ Metric learning: Huang et al (ICML 2015), Matsuzawa et al (ECCV
2016)

@ Dimensionality reduction: Harandi et al (PAMI 2017)
@ Kernel methods on covariance matrices
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Kernels on SPD matrices with Euclidean metric

@ Positive definite kernels defined with the Frobenius inner product
(. )Fand norm || [|¢

@ Polynomial kernels
K(A B) = ((AB)F+¢))? =[r(ATB)+ ]9, deN,c>0
@ Gaussian and Gaussian-like kernels

1
K(A.B) = exp(~—5|IA— BIff). 0<p=2
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Kernels on SPD matrices with Log-Euclidean metric

@ Positive definite kernels on Sym™*(n) defined with the
Log-Euclidean inner product ( , )ioee @and norm || ||ioee

@ Polynomial kernels

K(A, B) = ((A, B)iogt + €))?
= ((log(A), log(B))r + ¢)¥, deN,c>0

@ Gaussian and Gaussian-like kernels
1 _
K(A,B) = exp(~ 5 I(A© B )lIfe). 0<p<2

_ exp(_;z| log(A) — log(B)|[2)
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Kernels on SPD matrices - Stein divergence

@ Sra (NIPS 2012)

K(A, B) = exp[—od2,;, (A, B)]

stein

is positive definite if and only if

1 n—1 n—1
06{2,1..., 5 }U{UER.0>2}

@ One needs to be careful when fine-tuning o to ensure the kernel
remains positive definite.

H.Q. Minh (IIT) Covariance matrices & covariance operators November 29, 2017 113/125



Kernels on SPD matrices with Affine-invariant

Riemannian distance?

K(A, B) = exp[—od2:(A, B)]

@ K cannot be positive definite for all ¢ > 0, since the Riemannian
manifold has nonpositive curvature (Feragen et al, CVPR 2015)

@ Open question: Can K be positive definite for some specific
choices of ¢?
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Kernel methods with Log-Euclidean metric

@ S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandl..
Kernel methods on the Riemannian manifold of symmetric positive
definite matrices. CVPR 20183.

@ S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandl..
Kernel methods on Riemannian manifolds with Gaussian RBF
kernels, PAMI 2015.

@ P Li, Q. Wang, W. Zuo, and L. Zhang. Log-Euclidean kernels for
sparse representation and dictionary learning, ICCV 2013

@ D. Tosato, M. Spera, M. Cristani, and V. Murino. Characterizing
humans on Riemannian manifolds, PAMI 2013
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Kernel methods with Log-Euclidean metric

for image classification

~
Images Feature Covariance Log-E  Distance Matrix Kernel SVM
SXtScucn matrix Classification
>
o
°
o © 0, o °
o O .
. °
o
et
Gaussian
Fish
J
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Material classification

Example: KTH-TIPS2b data set

f(x,y) = [R(x,y), G(x,y), B(x,y),
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Object recognition

Example: ETH-80 data set

f(Xv.y) = [X,y, /(X7y)7 ‘IX‘7 “}"]
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Numerical results

Better results with covariance operators (Part I1)!

Method | KTH-TIPS2b | ETH-80

E 55.3% 64.4%
(£7.6%) | (+0.9%)

Stein 73.1% 67.5%
(£8.0%) | (+0.4%)

Log-E 741 % 71.1%
(£7.4%) | (£1.0%)
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Comparison of metrics

Results from Cherian et al (PAMI 2013) using Nearest Neighbor

Method Texture | Activity

Affine-invariant | 85.5% | 99.5%

Stein 85.5% | 99.5%

Log-E 82.0% | 96.5%

Texture: images from Brodatz and CURET datasets
Activity: videos from Weizmann, KTH, and UT Tower datasets
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Summary of Part | - Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
© Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Thank you for listening!
Questions, comments, suggestions?
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