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From finite to infinite dimensions
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Part | - Outline

Finite-dimensional setting

Covariance Matrices and Applications

@ Data Representation by Covariance Matrices
@ Geometry of SPD matrices

© Machine Learning Methods on Covariance Matrices and
Applications in Computer Vision
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Part Il - Qutline

Infinite-dimensional setting

Covariance Operators and Applications

@ Data Representation by Covariance Operators
@ Geometry of Covariance Operators

© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
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From finite to infinite-dimensional settings

/ D
Sym™*(n)
FINITE DIMENSIONAL INFINITE DIMENSIONAL
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Part Il - Qutline

Infinite-dimensional setting

Covariance Operators and Applications

@ Data Representation by Covariance Operators
@ Geometry of Covariance Operators

© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
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Covariance operator representation - Motivation

@ Covariance matrices encode linear correlations of input features
@ Nonlinearization
@ Map original input features into a high (generally infinite)
dimensional feature space (via kernels)
@ Covariance operators: covariance matrices of infinite-dimensional
features
© Encode nonlinear correlations of input features
© Provide a richer, more expressive representation of the data
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Covariance operator representation

@ S.K. Zhou and R. Chellappa. From sample similarity to ensemble
similarity: Probabilistic distance measures in reproducing kernel
Hilbert space, PAMI 2006

@ M. Harandi, M. Salzmann, and F. Porikli. Bregman divergences for
infinite-dimensional covariance matrices, CVPR 2014

@ H.Q.Minh, M. San Biagio, V. Murino. Log-Hilbert-Schmidt metric
between positive definite operators on Hilbert spaces, NIPS 2014

@ H.Q.Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016
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Positive Definite Kernels

@ X any nonempty set

@ K: X x X — Ris a (real-valued) positive definite kernel if it is
symmetric and

N
> aigiK(x;, %) >0
ij=1

for any finite set of points {x;}"¥, € A and real numbers
{a}N, eR.
° [K(x;, xj)],’.\’j:1 is symmetric positive semi-definite
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Reproducing Kernel Hilbert Spaces

@ K a positive definite kernel on X’ x X. For each x € X, there is a
function Ky : X — R, with Ki(t) = K(x, t).

N
Mk ={>_aiKy: NeN}

i=1
with inner product
O aiKa, Y biKy)ue = > aibiK(x, y)
i j ij

@ Hyx = RKHS associated with K (unique).
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Reproducing Kernel Hilbert Spaces

@ Reproducing property: for each f € Hy, for every x € X
f(x) = (f, Ke)rx

@ Abstract theory due to Aronszajn (1950)
@ Numerous applications in machine learning (kernel methods)
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Examples: RKHS

@ The Gaussian kernel K(x, y) = exp(— u) on R” induces the
space
1 \5\
_ 2 _ L 2

@ The Laplacian kernel K(x,y) = exp(—a|x — y|), a> 0,on R"
induces the space

M = {lIfll5, = 2 [}(6)1Pdg < oo}

with C(n) = 27"z T(24)
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Feature map and feature space

@ Geometric viewpoint from machine learning

@ Positive definite kernel K on X x X" induces feature map
O X — Hk

®(x) = Ky € Hk, Hy = feature space
<¢(X)7 (D(.y)>'HK = <KX7 Ky>HK = K(Xa.y)

@ Kernelization: Transform linear algorithm depending on
(X, Y)rn

into nonlinear algorithms depending on

K(x.y)
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Covariance matrices

p = Borel probability distribution on X ¢ R", with
[ 1xidp() < o
X

@ Mean vector

= /X xdp(x)

@ Covariance matrix

C = [ (x=mx = dp(x)
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RKHS covariance operators

p = Borel probability distribution on &', with

J 10001 Bdnt) = | Kixx)dptx) <

@ RKHS mean vector
po = B[000] = | #()p(x) € i

@ Forany f € Hyg

mwwzﬁmw»mw /fdm)mm
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RKHS covariance operators

@ RKHS covariance operator Cy : Hx — Hk
Co = Ep[(®(x) — 1) @ (®(x) — )]
= /X P(x) @ S(x)dp(X) —p @ p

@ Forallf,g € Hk

(F. Cog)y = /X (F, D)) 4, (G P02 Ap(X) — (1 P (12 G
— B,(19) - E,(NE,(g)
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Empirical mean and covariance

@ X = [xy,...,xn] = data matrix randomly sampled from X
according to p, with m observations

@ Informally, ® gives an infinite feature matrix in the feature space
Hy, of size dim(Hk) x m

O(X) = [®(x1),...,P(Xm)]

@ Formally, (X) : R™ — H is the bounded linear operator

m
d(X)w = Z w;d(x;), weR”
i=1
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Empirical mean and covariance

@ Theoretical RKHS mean

po = [ ®(x)dp(x) € H
X
@ Empirical RKHS mean

1 & 1
Hox) = - Z‘D(Xi) = E¢(X)1m € Hgk
i=1
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Empirical mean and covariance

@ Theoretical covariance operator Co : Hx — Hx

Co — /X o(x) ® S(X)dp(X) — 1 ® p

@ Empirical covariance operator Co(x) : Hx — Hk

m

1
Coxy) = — D 0(x) ® D(X) — pox) @ Hox)

i=1

1 *
= —O(X)Jm®(X)

Jm = Im — 1,1} = centering matrix
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RKHS covariance operators

@ Cy is a self-adjoint, positive, trace class operator, with a countable
set of eigenvalues {\x}7° ;, Ax > 0 and

oo
Z)\k < o0
k=1

@ Cox) is a self-adjoint, positive, finite rank operator
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Covariance operator representation of images

@ Given an image F (or a patch in F), at each pixel, extract a feature
vector (e.g. intensity, colors, filter responses etc)

@ Each image corresponds to a data matrix X
X =[X1,...,Xm] = nx m matrix

where m = number of pixels, n = number of features at each pixel

@ Define a kernel K, with corresponding feature map ¢ and feature
matrix
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Covariance operator representation of images

@ Each image is represented by covariance operator
1 *
Cox) = - @(X)Im®(X)

@ This representation is implicit, since ® is generally implicit
@ Computations are carried out via Gram matrices

@ Can be approximated by explicit, low-dimensional approximation
of ¢
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Part Il - Qutline

Infinite-dimensional setting

Covariance Operators and Applications

@ Data Representation by Covariance Operators
@ Geometry of Covariance Operators

© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators

e Infinite-dimensional generalization of Sym™*(n)

o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric

o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric

© Convex cone of positive definite operators

e Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators
e Infinite-dimensional generalization of Sym™ ™ (n)
o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric
o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric
© Convex cone of positive definite operators

o Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences
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Hilbert-Schmidt metric

Generalizing Frobenius inner product and distance on Sym™*(n)

(A.B)r = (ATB), de(A,B) = ||A— Bl|r

@ # = infinite-dimensional separable real Hilbert space, with a
countable orthonormal basis {ex};°

@ A:H — H =bounded linear operator

Ax
A= s I
xerx20 |[X]]

@ Adjoint operator A* : H — H (transpose if H = R")
(Ax,y) = (X, A"y) Yx,y e H
@ Self-adjoint: A* = A
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Hilbert-Schmidt metric

Generalizing the Frobenius inner product (A, B)r = tr(A” B)
@ Hilbert-Schmidt inner product

oo o)

(A, B)us = tr(A"B) = > (ex, A"Bey) = Y (Ae, Bey)
k=1 k=1

between Hilbert-Schmidt operators on the Hilbert space H
HS(H) = {A: [|Allfis = u(A*A Z | Aex|[? < oo}

for any orthonormal basis {ex }ken
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Hilbert-Schmidt metric

Generalizing the Frobenius norm ||A||¢
@ Hilbert-Schmidt norm

1Al[fs = tr(A*A Z | Aex|[? < oo}
k=1

@ Ais Hilbert-Schmidt = A is compact, with a countable set of
eigenvalues {\x}3°

@ If Ais self-adjoint

1Alls = > A%
k=1
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Hilbert-Schmidt distance between RKHS covariance

operators

@ Two random data matrices X = [xq,....Xmland Y = [y1,..., Vm]
sampled according to two Borel probability distributions px and py
on X give rise to two empirical covariance operators

1
C¢.(x) = ECD(X)Jm(D(X)* Hik = Hi

1
Cq>(y) = ECD(Y)Jm(D(Y)* Hk = Hk

@ Closed-form expressions for ||Cox) — Co(v)l|ns in terms of the
m x m Gram matrices
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Hilbert-Schmidt distance between RKHS covariance
operators

The Hilbert-Schmidt distance between Cqxy and Coy)

1 2
1Cox) = Copn)lBs = — (ImKTX], KIXldm)r — 5 (JnK[X, Y], KIX, Y]}
1
+ 5 (nKIY], K[}

The Hilbert-Schmidt inner product between Cexy and Ce(y)

1
(Coxys Co(y))ns = ﬁ<JmK[X7 Y], K[X, Y]Jm)F.
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Hilbert-Schmidt distance - Computational complexity

@ Requires the calculation of m x m Gram matrices and their
pointwise multiplication. The computational complexity required is
o(m?).

@ For set of N data matrices {Xj}j’\;, then for computing all the
pairwise Hilbert-Schmidt distances/inner products between the
corresponding covariance operators {C¢(x,)}j’i 1, the
computational complexity required is O(N?m?).
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators
e Infinite-dimensional generalization of Sym™(n)
o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric
o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric
© Convex cone of positive definite operators

o Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences
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Infinite-dimensional generalization of Sym™*(n)

@ The infinite-dimensional setting is significantly different from the
finite-dimensional setting

@ The functions log, det, different norms || || are defined for specific
classes of operators

@ The regularization (A + ~/) is necessary both theoretically and
empirically
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Infinite-dimensional generalization of Sym™*(n)

@ Motivation : Generalizing the Log-Euclidean distance
dioge (A, B) = || log(A) — log(B)||r, A,B € Sym™"(n)

to the setting where A, B are self-adjoint, positive, bounded
operators on a separable Hilbert space #

@ Two issues to consider

@ Generalization of the principal matrix log function
@ Generalization of the Frobenius inner product and norm (the
Hilbert-Schmidt norm is not sufficient)
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Infinite-dimensional generalization of Sym™*(n)

Generalizing the principal matrix log(A) function

@ A Sym*"(n), with eigenvalues {\«}{_, and orthonormal
eigenvectors {u}y_,

n n
A= Z )\kuku[, |og(A) = Z Iog()\k)uku[
k=1 k=1

@ A:H — H self-adjoint, positive, compact operator, with
eigenvalues {\¢}32 4, Ak > 0,limy_, o A\x = 0, and orthonormal
eigenvectors {uy}°

o
A= MUk @ ug), (U @ ug)w = (U, wuy
k=1

log(A) = _ log(M)(ux © ug), Jim_log(Ax) = —o0
pa
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Infinite-dimensional generalization of Sym™*(n)

First problem: unboundedness of log(A) since limg_ ..o Ak =0
log(A) = kz_; log(Ak)(Uk @ ug), k||_>moo log(A\k) = —0

Resolution: positive definite operators

@ Strict positivity, i.e. A\x > 0 Vk € N is not sufficient. We need A to
be positive definite

<AX7X>ZMAHX||27 MA>0

@ The eigenvalues of A are bounded from below by M4 > 0
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Infinite-dimensional generalization of Sym™*(n)

@ Finite-dimensional setting: {A\x}/_;, Ak >0
A is positive definite<—A is strictly positive
@ Infinite-dimensional setting: {Ax}2° ¢, Ak > 0, limg_,oc Ay =0

A is strictly positive and

A is positive definite<—= { Ais invertible
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Infinite-dimensional generalization of Sym™*(n)

@ First problem: unboundedness of log(A)

@ Resolution: positive definite operators

@ Regularization: examples of positive definite operators are
regularized operators of the form

{(A+7))>0 | yeR,y >0}
where A is self-adjoint, compact, positive. Then
log(A+~/)

is well-defined and bounded.
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Infinite-dimensional generalization of Sym™*(n)

@ Generalizing the Log-Euclidean distance
thogk(A, B) = || log(A) — log(B)||r, A,B € Sym™*(n)

to the setting where A, B are self-adjoint, positive, bounded
operators on a separable Hilbert space #

@ Two issues to consider

@ Generalization of the principal matrix log function
@ Generalization of the Frobenius inner product and norm (the
Hilbert-Schmidt norm is not sufficient)
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Infinite-dimensional generalization of Sym™*(n)

Second problem: The identity operator / is not Hilbert-Schmidt:
[Mlns = w(l) =
@ For~ # 1

| log(A+~1)||3s = Z[log M+ =

@ Fory #v

d(vl,vl) = |[log(v/v)!|us = |log(y/V)| [I/|lns =
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Infinite-dimensional generalization of Sym™*(n)

@ Second problem: The identity / is not Hilbert-Schmidt

@ Resolution: Extended (unitized) Hilbert-Schmidt algebra
(Larotonda, Differential Geometry and Its Applications, 2007)

HSx(H) ={A+~+l : A€ HS(H),v € R}
@ Extended (unitized) Hilbert-Schmidt inner product
(A+~1, B+ v)ens = (A, Bus + yv

i.e. the scalar operators ~/ are orthogonal to the Hilbert-Schmidt
operators

2 2 2
[[A+leus = [IAllfs +7  [/]]ens = 1
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Infinite-dimensional generalization of Sym™*(n)

@ Hilbert manifold of positive definite (unitized) Hilbert-Schmidt
operators (Larotonda 2007)

Y(H)={A+~vI>0: A=A Ac HS(H),y € R}

@ Infinite-dimensional manifold
@ For (A+~vl) e X(H)
log <A -+ l)
v

2

|| log(A +~71)[[24s = + (log7)? < 00

HS
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Infinite-dimensional generalization of Sym™*(n)

Manifold Sym™ " (n) (SPD matrices) generalizes to
Manifold X(#) (positive definite operators)

Two major differences with the finite-dimensional setting
@ log(A) is unbounded for a compact operator A
© The identity operator / is not Hilbert-Schmidt

Resolutions

@ The regularization form (A + ~/), which is positive definite is
necessary both theoretically and empirically

@ Extended (unitized) Hilbert-Schmidt inner product and norm
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Infinite-dimensional generalization of Sym™*(n)

Manifold Sym™ " (n) (SPD matrices) generalizes to
Manifold X(#) (positive definite operators)

The following are both well-defined on X(#)
@ Generalization of Affine-invariant Riemannian metric
@ Generalization of Log-Euclidean metric
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Infinite-dimensional generalization

INFINITE DIMENSIONAL
\ RIEMANNIAN MANIFOLD /
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators
e Infinite-dimensional generalization of Sym™ ™ (n)
o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric
o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric
© Convex cone of positive definite operators

o Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences
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Affine-invariant Riemannian metric

@ Affine-invariant Riemannian metric: Larotonda (2005), Larotonda
(2007), Andruchow and Varela (2007), Lawson and Lim (2013)

@ Larotonda, Nonpositive curvature: A geometrical approach to
Hilbert-Schmidt operators, Differential Geometry and Its
Applications, 2007

In the setting of RKHS covariance operators

@ H.Q.M. Affine-invariant Riemannian distance between
infinite-dimensional covariance operators, Geometric Science of
Information, 2015
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Affine-invariant Riemannian metric

Tangent space

@ Finite-dimensional
Tp(Sym™™(n)) = Sym(n), VP € Sym*™"(n)
@ Infinite-dimensional: (Larotonda 2007)

Tp(Z(H)) = Hr VP € I(H)
Hg = {A+~l . A*=A AcHS(H), € R}
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Affine-invariant Riemannian metric

Riemannian metric

@ Finite-dimensional: For P € Sym™*(n)
(A,B)p = (P71/2AP~1/2 p=1/2BP~1/2)

where A, B € Sym(n)
@ Infinite-dimensional: (Larotonda 2007) For P € ¥ (H)

(A+~D),(B+vl))p
= (PV2(A4+ NP2 P~V2(B 4 vl)P~1/3) s

where (A+~/),(B+vl) € Hr
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Affine-invariant Riemannian metric

Affine invariance

@ Finite-dimensional
(CACT,CBCT)cpcr = (A, B)p
@ Infinite-dimensional: For any invertible C + 6/, C € HS(H)

((C+BI)(A+1)(C +81)*(C + 81)(B+ vI)(C +81))cranpic-an
= ((A+1).(B+vI)p
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Affine-invariant Riemannian metric

Geodesics
@ Geodesically complete Riemannian manifold
@ Unique geodesic joining A, B € Y (H)

’YAB(t) — A1/2(A71/ZBA71/2)1‘A1/2
v48(0) = A, va8(1) =B

@ Exponential map Expp : Tp(X(H)) — L(H)
Expp(V) = P2 exp(P~1/2vpP~1/2)p1/2

is defined for all V € Tp(X(H))
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Affine-invariant Riemannian metric

Riemannian distance

@ Finite-dimensional
due(A, B) = || log(A~/2BA™1/2)||

@ Infinite-dimensional: Riemannian distance between (A + «/),
(B+vl) e £(H)

Auns[(A+ 1), (B + vl
= || log[(A+~N)"V2(B+ vI)(A+ v1)""?]||ens
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Affine-invariant Riemannian distance

Proposition (H.Q.M. - GSI 2015)

d2us[(A+ A1), (B + vi)] dim(H) = oo
. 2
:tr{log </:+/> 1 (f+/> } +(Iog%)2
dus[(A+ D), (B+ vi)] = diel(A+ 1), (B+vl)]  dim(H) < oo
_ 2
:tr{log </;\+/> 1 <f+/ } + (Iog%)zdim(ﬂ)
_2 (Iog%) tr{log </;\ 4 />1 <S + l) }
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Affine-invariant Riemannian distance between RKHS

covariance operators

For~v > 0,v > 0,
Gins[(Cox) + Vhix): (Corvy + V)]
= s [ (000000 +1hay ) (OO0 + v )|
has a closed form expression via the m x m Gram matrices
KIX] = o(X)"®(X), (K[X]); = K(x;, X)),
KIY] = o(Y) o(Y), (KY]); = K(¥i ),
KIX, Y] = o(X)*o(Y), (KX, Y]); = K(x;, %))
KIY, X] = o(Y)*o(X), (KTY, x]); = K(yi, X))
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Affine-invariant Riemannian distance between RKHS
covariance operators

Theorem (H.Q.M. - GSI 2015)
Fordim(Hk) = oo, v > 0,v > 0,

dEusl(Copx) + Vhie), (Copry + vhy)]

Ci1 Ci2 Cy3 2 2
=trilog | | Cot Co2 Coz | + hm +(Iog;)
Ci1 Ci2 Cy3
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Affine-invariant Riemannian distance between RKHS

covariance operators

1 1
Ci1 = meK[Y]Jm, Coy = o

ImK[X, Y]Jm

1
yvm

1 1 -

1 —1
Ci2=— InKTY, X]Jm (lm + meK[X]Jm>

1 1 -
1

1 KX (/m + ;meK[X]Jm) ImK[X, Y]Jim

Vy3vm

Coz = —
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Affine-invariant Riemannian distance between RKHS
covariance operators

Theorem (H.Q.M. - GSI 2015)
Fordim(Hk) < oo, v > 0,v > 0,

dEusl(Cox) + 7hie), (Copyy + v )]

Cii Cr2 Gz ? 12
=trqlog | | Co1 Coo Cosz | + b - ('08; ;) dim(Hk)
Cii Ci2 Gz

5 Ci1 Ci2 Cis
-2 <|Og ;) tr < log Co1 Coo Co3 | + bk
Ci1 Ci2 Cis

H.Q. Minh (IIT)
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Affine-invariant Riemannian distance between RKHS

covariance operators

Special case

For linear kernel K(x,y) = (x,y), x,y € R"

Aains[(Cox) + Vhix)s (Coryy + vhyy )] = Auel(Cx + vln), (Cy + vin)]

This can be used to verify the correctness of an implementation
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Affine-invariant Riemannian distance between RKHS

covariance operators

@ For m € N fixed, v # v,

lim daiHS [(C(D(X) + 7’7‘[}()7 (C(D(Y) + VIHK)] = 00

dim(Hx)—o0

@ In general, the infinite-dimensional formulation cannot be
approximated by the finite-dimensional counterpart.
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Affine-invariant Riemannian distance - Computational

complexity

@ Requires the multiplications and inversions of m x m matrices,
and the eigenvalue computation for a 3m x 3m matrix. Total
computational complexity required is O(m?).

@ For a set of N data matrices {X; j";, in order to compute all the
pairwise distances between the corresponding regularized
covariance operators, the total computational complexity is
O(N?m?).
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators
e Infinite-dimensional generalization of Sym™ ™ (n)
o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric
o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric
© Convex cone of positive definite operators

o Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences

H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 62 /99



Log Hilbert-Schmidt metric

@ H.Q.Minh, M. San Biagio, V. Murino. Log-Hilbert-Schmidt metric
between positive definite operators on Hilbert spaces, NIPS 2014

@ H.Q.Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016
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Log-Hilbert-Schmidt metric

@ Generalization from Sym™*™(n) to ¥ (H)

©: T(H) x T(H) — T(H)

(A+~1)® (B+ vl) = expllog(A+ vl) + log(B + v1)]

® R x T(H) = £(H)

A® (A+7l) =exp[Mog(A+~N] = (A+~)*, AeR
@ (X(H),®,®) is a vector space

@ ( acting as vector addition
e ® acting as scalar multiplication
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Log-Hilbert-Schmidt metric

@ (X(H),®,®) is a vector space
@ Log-Hilbert-Schmidt inner product

(A+ 1, B+ vi)ioens = (log(A + 1), log(B + vl))ens
[[A+71[logns = || log(A + v/)|lens

@ (Z(H),®,®,(, )ogns) is a Hilbert space
@ Log-Hilbert-Schmidt distance is the Hilbert distance

Ooghis (A + 71, B+ vl) = [[log(A + 1) — log(B + v} |ens
= [[(A+70) ® (B+ ) liogns
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Log-Hilbert-Schmidt distance between RKHS

covariance operators

The distance
dlogHS [( Cd)(X) + 7’7‘[;{)7 (C¢(Y) + V/HK)]
= OogHis [<;¢(X)Jm¢(X)* + ’Y/HK> , <;¢(Y)Jm¢(Y)* + u/HKﬂ
has a closed form in terms of m x m Gram matrices
K[X] = &(X)"®(X), (K[X])j = K(xi, X)),
KIY] = o(Y)"o(Y), (K[Y]); = K(¥i. ¥)),
KX, Y] = &(X)"®(Y), (K[X, Y]); = K(xi., ¥;)
KLY, X] = ®(Y) ®(X), (K[Y, x]); = K(¥i, X})
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Log-Hilbert-Schmidt distance between RKHS

covariance operators

1 1
%JmK[X]Jm = UpxaUJ, —— ImK[Y]dn = UpsgUL,

1
Vyvm

A'B =

JmK[X, Y]Jnm

Cag = 1, log(In, + Za)Z, " (UsA*BUg o U; A*BUg)S 5" log(In, + £8) 1,
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

Theorem (H.Q.M. et al - NIPS2014)

Assume thatdim(Hg) = co. Lety > 0, v > 0. The Log-Hilbert-Schmidt
distance between (Cox) + vhiy) and (Coyy + vhy) is

AR atis[(Cox) + Yhix), (Corvy + vhy )] = trllog(In, + Ta))? + trflog(In, + X))
—2Cpp + (logy — logv)?

The Log-Hilbert-Schmidlt inner product between (Co(x) + vhi,) and
(Cq;(y) + VIHK) is

((Comxy +7hix)s (Coryy + vhyy ) )iogns = Cag + (logv)(log )
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

Theorem (H.Q.M. et al - NIPS2014)

Assume that dim(Hg) = co. Lety > 0.
The Log-Hilbert-Schmidt norm of the operator (Cexy + vhyy) is
]2

1(Cox) + Vi) lfogns = trllog(In, + Za)]? + (log)?
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

Theorem (H.Q.M. et al - NIPS2014)
Assume that dim(Hk) < co. Lety > 0, v > 0. The Log-Hilbert-Schmidt
distance between (Cox) + vhi) and (Coyy + vhy) is

Aaris[(Cox) + Vhix), (Coqvy + vhi,)]

= flog(l, + Za)I? + trflog(In + Tp)]* — 2Cag

+2(log ) (rllog( i, + £a)] — trflog(In, + T5)])

+ (log 7y — log v)?dim(H)
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

Theorem (H.Q.M. et al - NIPS2014)
Assume that dim(Hk) < co. Lety > 0, v > 0. The Log-Hilbert-Schmidt
inner product between (Coxy + Yhi) and (Co(yy + vhy) is

((Comxy + 7hix)s (Coryy + Vhy))ioghs
= Cap + (log v)tr[log(In, + Za)]
+ (log 7)tr[log(In, + X 8)] + (log v log v)dim(H )

The Log-Hilbert-Schmidt norm of (Ce(xy + Yh) is

1(Coxy + i) [Bgs = trllog(In, + Za)I? + 2(log 7)trllog(In, + L)l
+ (log )?dim(H)

v
H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 71/99



Log-Hilbert-Schmidt distance between RKHS

covariance operators

Special case
For linear kernel K(x,y) = (x,y), x,y € R"
Ahogris[(Cox) + Yk )s (Corvy + vhi )] = Gogel(Cx + 7)), (Cy + vip)]

((Coxy + vhiy), (Coyy + vhy )ogns = ((Cx + vIn), (Cy + vIn))1oge
I1(Cx + Yhu ) logns = [|[(Cx + vIn)lfi0ge

These can be used to verify the correctness of an implementation
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Log-Hilbert-Schmidt distance between RKHS

covariance operators

@ For m € N fixed, v # v,

lim dlogHS[(CCD(X) + 7’7‘[}()7 (CCD(Y) + VIHK)] =00

dim(Hk)—o0

@ In general, the infinite-dimensional formulation cannot be
approximated by the finite-dimensional counterpart.
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Log-Hilbert-Schmidt distance - Computational

complexity

@ Requires the SVD and multiplications of Gram matrices of size
m x m. The computational complexity required is O(m?®).

@ For a set of N data matrices {X; j’\;, then the computational
complexity required for computing all pairwise distances between
the corresponding regularized covariance operators is O(N?m?).
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Approximate methods for reducing computational

costs

@ M. Faraki, M. Harandi, and F. Porikli, Approximate
infinite-dimensional region covariance descriptors for image
classification, ICASSP 2015

@ H.Q. Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016

@ Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust estimation
of approximate infinite-dimensional Gaussian with application to
material recognition, CVPR 2016
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Geometry of Covariance Operators

@ Hilbert-Schmidt metric: generalizing the Euclidean metric
@ Manifold of positive definite operators

e Infinite-dimensional generalization of Sym™ ™ (n)

o Infinite-dimensional affine-invariant Riemannian metric:
generalizing finite-dimensional affine-invariant Riemannian metric

o Log-Hilbert-Schmidt metric: generalizing Log-Euclidean metric

© Convex cone of positive definite operators

o Log-Determinant divergences: generalize the finite-dimensional
Log-Determinant divergences
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Log-Determinant divergences

@ Zhou and Chellappa (PAMI 2006), Harandi et al (CVPR 214):
finite-dimensional RKHS

@ H.Q.M. Infinite-dimensional Log-Determinant divergences
between positive definite trace class operators, Linear Algebra
and its Applications, 2017

@ H.Q.M. Log-Determinant divergences between positive definite

Hilbert-Schmidt operators, Geometric Science of Information,
2017
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Summary - Geometry of Covariance Operators

@ Hilbert-Schmidt distance and inner product
@ Affine-invariant Riemannian distance
@ Log-Hilbert-Schmidt distance and inner product

@ Explicit formulas via Gram matrices in the case of RKHS
covariance operators
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Part Il - Qutline

Infinite-dimensional setting

Covariance Operators and Applications

@ Data Representation by Covariance Operators
@ Geometry of Covariance Operators

© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
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Kernels with Log-Hilbert-Schmidt metric

(X(H),®,®, {, )ogns) is a Hiloert space

Theorem (H.Q.M. et al - NIPS 2014)
The following kernels K : (1) x £(H) — R are positive definite

KI[(A+~1),(B+v)] = (¢ + (A+ 7], B+ vl)ogns)?

c>0,deN
1
KI(A+ 1), (B+v)] = exp(——||log(A+7/) — log(B + »/)| ys)
0<p<2,0#0
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Two-layer kernel machine with Log-Hilbert-Schmidt

metric

@ First layer: kernel Ky, inducing covariance operators

@ Second layer: kernel K>, defined using the Log-Hilbert-Schmidt
distance or inner product between the covariance operators
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Two-layer kernel machine with Log-Hilbert-Schmidt

metric

- I
Images Kernel Covariance LogHS Distance Matrix Kernel SVM
operator K2 Classification
° o
o
°
» ° ? o ©
° © »
e °
°
Inducing
mapping eg.
@ Gaussian
. eg
FISh Gaussian
\ J
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Experiments in Image Classification

@ Multi-class image classification using multi-class SVM with the
Gaussian kernel

@ Each image is represented by one covariance operator
@ Fish recognition
@ Material classification
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Fish recognition

Class 1 Class2 Class3 Class4 Class5 Class 6 Class7 Class8 Class9

Class19 Class20 Class21 Class22  Class 23

(Boom et al, Ecological Informatics, 2014)
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Fish recognition

Using R,G,B channels

Method Accuracy

E | 26.9% (+3.5%)

Stein | 43.9% (+3.5%)

Log-E | 42.7% (£3.4%)

HS 50.2% (£2.2%)

Log-HS | 56.7% (+2.9%)
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Material classification

Example: KTH-TIPS2b data set (Caputo et al, ICCV, 2005)

f(x,y) = [R(x,y), G(x,y), B(x,y),|G*?(x,y)|,...|G**(x,y)|]
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Material classification

Method KTH-TIPS2b
E 55.3% (+7.6%)
Stein 73.1% (£8.0%)
Log-E 74.1 % (£7.4%)
HS 79.3% (+£8.2%)
Log-HS 81.9% (+3.3%)

Log-HS (CNN)

96.6% (+3.4%)

CNN features = MatConvNet features
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Object recognition

Example: ETH-80 data set

f(Xv.y) = [X,y, /(X7y)7 ‘IX‘7 “}"]
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Object recognition

Results obtained using approximate Log-HS distance

Method ETH-80
E 64.4%(+0.9%)
Stein 67.5% (+0.4%)
Log-E 71.1%(+1.0%)
HS 93.1 % (+0.4)
Approx-LogHS | 95.0% (£0.5%)
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Summary: Kernel methods with covariance operators

@ Two-layer kernel machine with Log-Hilbert-Schmidt metric

@ Substantial gains in performance compared to finite-dimensional
case, but higher computational cost
@ Approximate methods for reducing computational costs

e H.Q. Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016
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Summary: Infinite-dimensional setting

@ Data Representation by Covariance Operators
© Geometry of Covariance Operators
o Hilbert-Schmidt distance and inner product
o Affine-invariant Riemannian distance and inner product
o Log-Hilbert-Schmidt distance and inner product
© Machine Learning Methods on Covariance Operators and
Applications in Computer Vision
e Two-layer kernel machine with Log-Hilbert-Schmidt metric
e Experiments in image classification
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Summary: Infinite-dimensional setting

@ Significantly different from finite-dimensional case

@ The classes of operators, i.e. positive definite operators, extended
Hilbert-Schmidt operators, must be defined carefully

@ Log-Euclidean metric, affine-invariant Riemannian metric,
Bregman divergences can all be generalized to
infinite-dimensional setting

@ Can obtain substantial gains in performance compared to
finite-dimensional case, but with higher computational costs
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Summary: Infinite-dimensional setting

@ Finite-dimensional approximation methods can be applied under
certain conditions, but not in general

@ Still undergoing active development, both theoretically and
computationally
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Conclusion

@ Overview of the finite-dimensional setting

o Covariance matrix representation
o Geometry of SPD matrices
o Kernel methods with covariance matrices

@ Generalization to the infinite-dimensional setting via kernel
methods
e Covariance operator representation

o Geometry of covariance operators
o Kernel methods with covariance operators
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Some future directions

@ Applications of covariance operators
o Computer vision
e Image and signal processing
@ Machine learning and statistics
o Other fields

@ Covariance matrices and covariance operators in deep learning

@ C. lonescu, O. Vantzos, and C. Sminchisescu. Matrix
backpropagation for deep networks with structured layers, ICCV
2015

e Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust estimation
of approximate infinite-dimensional Gaussian with application to
material recognition, CVPR 2016

H.Q. Minh (IIT) Covariance matrices & covariance operators November 30, 2017 95/99



Some future directions

@ Connection between the geometry of positive definite operators
and infinite-dimensional Gaussian probability measures

o Finite-dimensional setting

Affine-invariant Riemannian metric <= Fisher-Rao metric
Log-Determinant divergences <= Rény divergences

e Infinite-dimensional setting: upcoming work
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Thank you for listening!
Questions, comments, suggestions?
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